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Abstract
In this paper, by means of the discrete zero curvature representation,
nonisospectral negative Volterra flows and mixed Volterra flows are proposed.
By means of solving corresponding discrete spectral equations, we demonstrate
the existence of infinitely many conservation laws for the two nonisospectral
flows and obtain the formulae of the corresponding conserved densities
and associated fluxes. Integrable time discretizations for several isospectral
equations of the two flows are also presented.

PACS numbers: 02.40.Tt, 02.20.Sv

1. Introduction

In recent years there has been wide interest in the study of nonlinear integrable lattice systems.
It is well known that discrete lattice systems not only possess rich mathematical structures,
but also have many applications in science, such as mathematical physics, numerical analysis,
computer science, statistical physics, quantum physics, etc. Among the most famous and
well-studied integrable lattices, the Volterra lattice

u̇n = un(un+1 − un−1) (1.1)

is one of the popular models. The Volterra lattice (1.1) has been studied extensively [1–6]. It
relates to the following linear scattering problem:

Eψ(n, t, λ) = Unψ(n, t, λ)
dψ(n, t, λ)

dt
= Vnψ(n, t, λ) (1.2)
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where

Un =
(

λ un

−1 0

)
Vn =

(
un λun

−λ un−1 − λ2

)

and E is the shift operator in the variable n (n ∈ Z), defined by Ejf (n, t, λ) = f (n + j, t, λ),
and λ is the spectral parameter. Recently, Pritula and Vekslerchik [7] proposed the following
isospectral negative Volterra flows:

∂

∂tj+1
ln

τn+1

τn−1
+

τ 2
n

τn−1τn+1

∂2

∂t1∂tj
ln τn = 0 j � 1 (1.3)

and

∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
. (1.4)

Here the field function un is expressed by the tau-function

un = τn+1τn−2

τnτn−1
. (1.5)

Dark-soliton solutions of negative Volterra flows (1.3) and (1.4) were constructed in [7].
The Bäcklund transformation and nonlinear superposition formula of the negative Volterra
flows were obtained in [8]. As we know, the positive Volterra flows related to isospectral
and nonisospectral problems have been constructed. Thus, a natural question is: what are
nonisospectral negative Volterra flows? In this paper, we will first derive nonisospectral
negative Volterra flows by means of the discrete zero curvature representation

∂Un

∂t
+

∂Un

∂λ

dλ

dt
= V

(m)
n+1 Un − UnV

(m)
n (1.6)

where matrix V (m)
n possesses negative powers of the spectral parameter λ. Then we

will describe the nonisospectral mixed Volterra flows, which are a superposition of the
nonisospectral positive and negative Volterra flows. It is well known that the existence of IMCL
is a very important indicator of integrability of the system. From the viewpoint of physical and
numerical analysis, it is also very interesting to know whether there exist conservation laws for
a lattice system. In the present paper, by means of solving the corresponding discrete spectral
equation which has been successfully applied for many isospectral lattice systems [9–13], we
will demonstrate the existence of IMCL for the nonisospectral negative Volterra flows and
mixed Volterra flows. The formulae of the corresponding conserved densities and associated
fluxes will be derived. Thus, IMCL for the isospectral negative Volterra flows (1.3) and (1.4)
will also be obtained. Another purpose of the present paper is to discuss integrable time
discretization (difference–difference analogies) for the isospectral Volterra flows. Difference–
difference analogies for the two flows of isospectral negative Volterra hierarchy and mixed
Volterra hierarchy will be constructed.

2. Nonisospectral negative Volterra flows and mixed Volterra flows

In this section, we derive nonisospectral negative Volterra flows and mixed Volterra flows by
means of the discrete zero curvature representation. Suppose the time evolution of the spectral
parameter λ is described as

dλ

dt
= aλ−(2m−1) m � 1.
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We construct the time evolution matrix V (m)
n

V (m)
n =

(
A(m)(n, t, λ) −unEC(m)(n, t, λ)

C(m)(n, t, λ) E−1A(m)(n, t, λ) + λC(m)(n, t, λ)

)
(2.1)

where

A(m)(n, t, λ) =
m∑

j=1

am−j (n, t)λ−2j C(m)(n, t, λ) =
m∑

j=1

cm−j (n, t)λ−2j+1

and aj (n, t), cj (n, t) (j = 0, 1, . . . , m − 1) are solutions to the following equations:

(E − E−1)aj (n, t) + (E − 1)cj−1(n, t) = 0 j = 1, 2, . . . , m − 1

(E − 1)aj (n, t) + un+1E
2cj (n, t) − uncj (n, t) = 0 j = 1, 2, . . . , m − 1 (2.2)

(E − E−1)a0(n, t) = 0 (E − 1)a0(n, t) + un+1E
2c0(n, t) − unc0(n, t) = a.

From the discrete zero curvature representation, we obtain the nonisospectral negative Volterra
flows

∂

∂tm
un = un(E − 1)cm−1(n, t) m � 1 (2.3)

which can be expressed in the τn function form,

∂

∂tm
ln

τn+1

τn−1
= Ecm−1(n, t) m � 1 (2.4)

where cm−1(n, t),m � 1 has the formula:

a0(n, t) = 0 aj (n, t) = ∂

∂tj
ln

τn−1

τn

j = 1, 2, . . . , m − 1

c0(n, t) = τ 2
n−1

τn−2τn

�n cj (n, t) = −τ 2
n−1

τn−2τn

(
∂2

∂t1∂tj
ln τn−1 − aF (j)

n

)
j = 1, 2, . . . , m − 1

(2.5)

�n = 1 + a(E2 − 1)−1

(
τ 2
n

τn−1τn+1

)
(2.6)

F (j)
n = ∂

∂tj
(E2 − 1)−1

[
τ 2
n

τn−1τn+1
(E2 − 1)−1

(
τ 2
n+1

τnτn+2

)]
(2.7)

in which (E2 −1)−1 = −∑∞
k=0 E2k . The first and second flows of the nonisospectral negative

Volterra hierarchy are, respectively,

∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
�n+1 (2.8)

∂

∂t2
ln

τn+1

τn−1
+

τ 2
n

τn−1τn+1

(
∂2

∂t2
1

ln τn − aF
(1)
n+1

)
= 0. (2.9)

If the time evolution of the spectral parameter λ is written as

dλ

dt
= bλ2s+1 s � 0

and set the time evolution matrix

V (s)
n =

(
G(s)(n, t, λ) −unEH(s)(n, t, λ)

H (s)(n, t, λ) E−1G(s)(n, t, λ) + λH(s)(n, t, λ)

)
(2.10)
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where

G(s)(n, t, λ) =
s∑

j=0

gs−j (n, t)λ2j H (s)(n, t, λ) =
s∑

j=0

hs−j (n, t)λ2j+1

and gj (n, t), hj (n, t) (j = 0, 1, . . . , s) are solutions to the following equations:

(E − E−1)gj−1(n, t) + (E − 1)hj (n, t) = 0 j = 1, 2, . . . , s

(E − 1)gj (n, t) + un+1E
2hj (n, t) − unhj (n, t) = 0 j = 1, 2, . . . , s (2.11)

(E − 1)h0(n, t) = 0 (E − 1)g0(n, t) + un+1E
2h0(n, t) − unh0(n, t) = b

then the nonisospectral positive Volterra flows are obtained,

∂

∂ts
un = un(E − E−1)gs(n, t) s � 0 (2.12)

where gs(n, t), s � 0 has the formula

h0(n, t) = −1 g0(n, t) = un + nb h1(n, t) = −(un−1 + un + (2n − 1)b)

g1(n, t) = un(un−1 + un + un+1 + (2n − 1)b) + 2b(E − 1)−1un+1, . . . . (2.13)

Here (E −1)−1 = − ∑∞
k=0 Ek . Taking a superposition of nonisospectral positive and negative

Volterra flows, we obtain the nonisospectral mixed Volterra flows and isospectral mixed
Volterra flows corresponding to dλ

dt
= aλ−(2m−1), dλ

dt
= bλ2s+1 and dλ

dt
= 0, respectively,

∂

∂tm
ln

τn+1

τn−1
= Ecm−1(n, t) + (E + 1)ḡs(n, t) m � 1 s � 0 (2.14)

∂

∂tm
ln

τn+1

τn−1
= Ec̄m−1(n, t) + (E + 1)gs(n, t) m � 1 s � 0 (2.15)

∂

∂tm
ln

τn+1

τn−1
= Ec̄m−1(n, t) + (E + 1)ḡs(n, t) m � 1 s � 0 (2.16)

where c̄m−1(n, t) and ḡs(n, t) are defined by c̄m−1(n, t) = cm−1(n, t)|a=0 and ḡs(n, t) =
gs(n, t)|b=0. It is obvious that flows (2.14), (2.15) and (2.16) possess the Lax pairs Un and
V (m,s)

n in which

V (m,s)
n =




V (m)
n + V (s)

n

∣∣
b=0 for (2.14)

V (m)
n

∣∣
a=0 + V (s)

n for (2.15)

V (m)
n

∣∣
a=0 + V (s)

n

∣∣
b=0 for (2.16).

(2.17)

Example 1. Let m = 1, s = 0 in equations (2.14) and (2.15), we obtain two nonisospectral
mixed Volterra lattice equations, respectively,

∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
�n+1 +

τn+1τn−2

τn−1τn

+
τn−1τn+2

τnτn+1
(2.18)

∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
+

τn+1τn−2

τn−1τn

+
τn−1τn+2

τnτn+1
+ (2n + 1)b. (2.19)

Let m = 1, s = 1, another two nonisospectral mixed Volterra lattice equations are presented
as follows:

∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
�n+1 + (E + 1)

[
τn+1τn−3

τ 2
n−1

+
τn+2τn−2

τ 2
n

+

(
τn+1τn−2

τn−1τn

)2
]

(2.20)
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∂

∂t1
ln

τn+1

τn−1
= τ 2

n

τn−1τn+1
+ (E + 1)

[
τn+1τn−3

τ 2
n−1

+
τn+2τn−2

τ 2
n

+

(
τn+1τn−2

τn−1τn

)2
]

+ b(E + 1)

[
(2n − 1)

τn+1τn−2

τn−1τn

+ 2(E2 − 1)−1 τn+2τn−1

τn+1τn

]
. (2.21)

The mixed nonisospectral Volterra lattice equations corresponding to m = 2, s = 0 are

∂

∂t2
ln

τn+1

τn−1
= −τ 2

n

τn−1τn+1

(
∂2

∂t2
1

ln τn − aF
(1)
n+1

)
+

τn+1τn−2

τn−1τn

+
τn−1τn+2

τnτn+1
(2.22)

∂

∂t2
ln

τn+1

τn−1
= −τ 2

n

τn−1τn+1

∂2

∂t2
1

ln τn +
τn+1τn−2

τn−1τn

+
τn−1τn+2

τnτn+1
+ (2n + 1)b. (2.23)

3. IMCL for nonisospectral negative Volterra flows and mixed Volterra flows

For a lattice equation

F(q̇n, q̈n, . . . , qn−1, qn, qn+1, . . .) = 0 (3.1)

if there exist functions ρn and Jn such that

ρ̇n|F=0 = Jn − Jn+1 (3.2)

then equation (3.2) is called the conservation law of equation (3.1), with ρn being the conserved
density and Jn the associated flux. In this section, we first demonstrate the existence of
IMCL for the lattice hierarchy related to nonisospectral problem (1.2) by means of solving
the corresponding discrete spectral equations. Then we derive in detail IMCL for the
nonisospectral negative Volterra lattice hierarchy and the mixed Volterra lattice hierarchy.
The formulae of the corresponding conserved densities and associated fluxes are presented.

3.1. IMCL for lattice hierarchy associated with nonisospectral problem (1.2)

Consider the discrete spectral problem (1.2)

ψ2(n + 1, t, λ) = λψ2(n, t, λ) − un−1ψ2(n − 1, t, λ) (3.3)

which leads to a discrete Riccati-type equation,

un−1�n�n+1 − λ�n+1 + 1 = 0 (3.4)

where �n = ψ2(n−1,t,λ)

ψ2(n,t,λ)
. Note that

(ψ2(n + 1, t, λ)ψ−1
2 (n, t, λ))t

ψ2(n + 1, t, λ)ψ−1
2 (n, t, λ)

= (E − 1)
(ψ2(n, t, λ))t

ψ2(n, t, λ)
(3.5)

we obtain
∂

∂t
[ln(λ − un−1�n)] = (E − 1)Qn (3.6)

where

Qn = V
(m)

21 (n)(un−1�n − λ) + V
(m)

22 (n). (3.7)

Suppose that the eigenfunction ψ2(n, t, λ) is the analytical function of the arguments, we
obtain the Taylor series solution to equation (3.4),

�n =
∞∑

j=1

λ−jw(j)
n (3.8)
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where w
(j)
n is presented recursively as follows,

w(2j)
n = 0 w(1)

n = 1 w(3)
n = un−2 w(5)

n = un−2(un−2 + un−3)

w(2j+1)
n = un−2

∑
l+s=2j

w
(l)
n−1w

(s)
n j � 1. (3.9)

From equation (3.6), we have

∂

∂t

(
−ln λ +

∞∑
k=1

�k

k

)
= (1 − E)Qn (3.10)

where

� = λ−1un−1�n =
∞∑

j=1

λ−2jun−1w
(2j−1)
n .

Furthermore, it follows from equation (3.10) that

−λ−1 dλ

dt
+

∂

∂t

∞∑
j=1

λ−2jα(j)
n

= −λ−1 dλ

dt
− 2

∞∑
j=1

jλ−2j−1 dλ

dt
α(j)

n +
∞∑

j=1

λ−2j dα
(j)
n

dt
= (1 − E)Qn (3.11)

where

α(j)
n = v2j−1 +

1

2

∑
l1+l2=2j−2

vl1vl2 +
1

3

∑
l1+l2+l3=2j−3

vl1vl2vl3 + · · ·

+
1

j − 2

∑
l1+l2+···+lj−2=2j−j+2

vl1vl2 . . . vlj−2 + v
j−2
1 v3 +

1

j
v

j

1 (3.12)

in which vj = un−1w
(j)
n . In comparison with the powers of λ on both sides of equation (3.11),

we obtain IMCL for the lattice hierarchy related to nonisospectral equation (1.2)

ρ
(j)
n,t = (1 − E)J (2j−1)

n j � 1 (3.13)

where ρ
(j)
n (j � 1) corresponding to dλ

dt
= aλ−(2m−1) and dλ

dt
= bλ2s+1 are presented as

follows, respectively,

ρ(j)
n =




α
(j)
n j = 1, . . . , m − 1

α(m)
n − at j = m

α
(j)
n + 2(m − j)a

∫ t

0 α
(j−m)
n dt j � m + 1

(3.14)

ρ(j)
n = α(j)

n − 2b(s + j)

∫ t

0
α(s+j)

n dt j � 1. (3.15)

Therefore, nonisospectral negative Volterra flows (2.3) and mixed Volterra flows (2.12) possess
IMCL (3.13). Suppose that field function un is bounded for all n and is rapidly vanishing
at infinity, then infinitely many conserved quantities Hi of nonisospectral lattice hierarchies
(2.3) and (2.12) can be expressed in the following forms, respectively,

Hj =
∑

n

α(j)
n j = 1, 2, . . . , m − 1

Hj =
∑

n

(
α(j)

n + 2(m − j)a

∫ t

0
α(j−m)

n dt

)
j � m + 1

(3.16)
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and

Hj =
∑

n

(
α(j)

n − 2b(s + j)

∫ t

0
α(s+j)

n dt

)
j � 1. (3.17)

The integrand α
(j)
n in equations (3.16) and (3.17) is presented by equation (3.12). However, it

should be noted that the sum of the conserved density ρ(m)
n = α(m)

n − at is not defined.

3.2. Flux functions for nonisospectral negative Volterra flows and mixed Volterra flows

In this subsection, we will derive the flux functions for nonisospectral negative Volterra flows
and mixed Volterra flows. For nonisospectral negative Volterra lattice hierarchy (2.3), a direct
computation leads to

Qn = E−1A(m)(n) + un−1C
(m)(n)�n =

∞∑
j=1

J (j)
n λ−2j (3.18)

where

J (j)
n =

{
E−1am−j + un−1

∑j−1
i=0 cm−j+iw

(2i+1)
n j = 1, . . . , m

un−1
∑m

i=1 cm−iw
(2j−2i+1)
n j � m + 1.

(3.19)

Thus, flux functions of equation (2.3) are presented by equation (3.19). For nonisospectral
mixed Volterra lattice hierarchy (2.14), note that

Qn = E−1(A(m)(n) + G(s)(n)|b=0) + un−1(C
(m)(n) + H(s)(n)|b=0)�n =

∞∑
j=1

J (j)
n λ−2j (3.20)

where

J (j)
n =

{
E−1am−j + un−1

(∑j−1
i=0 cm−j+iw

(2i+1)
n +

∑s
i=0 h̄s−iw

(2j+2i+1)
n

)
j = 1, . . . , m

un−1
(∑m

i=1 cm−iw
(2j−2i+1)
n +

∑s
i=0 h̄s−iw

(2j+2i+1)
n

)
j � m + 1.

(3.21)

Therefore, flux functions of equation (2.14) are expressed in formula (3.21). For nonisospectral
mixed Volterra lattice hierarchy (2.15), since

Qn = E−1(A(m)(n)|a=0 + G(s)(n)) + un−1(C
(m)(n)|a=0 + H(s)(n))�n

= (n − 1)bλ2s + (E−1g1 + un−1h1 − un−1un−2)λ
2s−2 + · · ·

+ E−1gs + un−1

s∑
j=0

hs−jw
(2j+1)
n +

∞∑
j=1

J (j)
n λ−2j (3.22)

where

J (j)
n =

{
E−1ām−j + un−1

(∑j−1
i=0 c̄m−j+iw

(2i+1)
n +

∑s
i=0 hs−iw

(2j+2i+1)
n

)
j = 1, . . . , m

un−1
(∑m

i=1 c̄m−iw
(2j−2i+1)
n +

∑s
i=0 hs−iw

(2j+2i+1)
n

)
j � m + 1

(3.23)

we obtain flux functions formula for equation (2.15). For isospectral mixed Volterra lattice
hierarchy (2.16), note that

Qn = E−1(A(m)(n)|a=0 + G(s)(n)|b=0) + un−1(C
(m)(n)|a=0 + H(s)(n)|b=0)�n. (3.24)

By the formula of ḡs(n) and h̄s(n), we can prove that

Qn =
∞∑

j=1

J (j)
n λ−2j (3.25)
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where

J (j)
n =

{
E−1ām−j + un−1

(∑j−1
i=0 c̄m−j+iw

(2i+1)
n +

∑s
i=0 h̄s−iw

(2j+2i+1)
n

)
j = 1, . . . , m

un−1
(∑m

i=1 c̄m−iw
(2j−2i+1)
n +

∑s
i=0 h̄s−iw

(2j+2i+1)
n

)
j � m + 1.

(3.26)

Hence, flux functions of equation (2.16) have been obtained.

Example 2. The matrix V (1)
n of the first nonisospectral negative Volterra flow (2.8) has the

form

V (1)
n =

(
0 − τn−2τn

λτ 2
n−1

�n+1

τ 2
n−1

λτn−2τn
�n

τ 2
n−1

τn−2τn
�n

)
.

Note that

Qn =
∞∑

j=1

J (2j−1)
n λ−2j (3.27)

where

J (2j−1)
n = τn−1τn−3

τ 2
n−2

w(2j−1)
n �n j � 1. (3.28)

Therefore the conserved densities ρ
(j)
n and associated fluxes J

(2j−1)
n for flow (2.8) are obtained.

Example 3. The matrix V (2)
n of the second nonisospectral negative Volterra flow (2.9) is

written as

V (2)
n =


 a1

λ2 − τn+1τn−2

τnτn−1

(
Ec1
λ

+ τ 2
n

λ3τn−1τn+1
�n+1

)
c1
λ

+
τ 2
n−1

λ3τn−2τn
�n c1 + E−1a1

λ2 +
τ 2
n−1

λ2τn−2τn
�n


 .

Note

Qn =
(

c1

λ
+

τ 2
n−1

λ3τn−2τn

�n

)(
τnτn−3

τn−1τn−2
�n − λ

)
+ c1 +

E−1a1

λ2
+

τ 2
n−1

λ2τn−2τn

�n

=
∞∑

j=1

J (2j−1)
n λ−2j (3.29)

where

J (1)
n = E−1a1 +

τnτn−3

τn−1τn−2
c1

J (2j−1)
n = τnτn−3

τn−2τn−1
w(2j−1)

n c1 +
τn−1τn−3

τ 2
n−2

w(2j−3)
n �n j � 2

(3.30)

we thus get its conserved densities ρ
(j)
n and the associated fluxes J

(2j−1)
n (j � 1).

Example 4. The matrix V (1,0)
n of the nonisospectral mixed Volterra lattice equation (2.18) is

V (1,0)
n =


 τn+1τn−2

τnτn−1

λτn+1τn−2

τnτn−1
− τn−2τn

λτ 2
n−1

�n+1

τ 2
n−1

λτn−2τn
�n − λ

τnτn−3

τn−1τn−2
+

τ 2
n−1

τn−2τn
�n − λ2


 .
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Note that

Qn =
[

τ 2
n−1

λτn−2τn

�n − λ

] (
τnτn−3

τn−1τn−2
�n − λ

)
+

τnτn−3

τn−1τn−2
+

τ 2
n−1

τn−2τn

�n − λ2

=
∞∑

j=1

J (2j−1)
n λ−2j (3.31)

where

J (2j−1)
n = τn−1τn−3

τ 2
n−2

w(2j−1)
n �n − τnτn−3

τn−2τn−1
w(2j+1)

n j � 1. (3.32)

Therefore, we obtain the conserved densities ρ
(j)
n and associated fluxes J

(2j−1)
n for equation

(2.18). For nonisospectral lattice equation (2.19), the matrix V (1,0)
n reads

V (1,0)
n =


 τn+1τn−2

τnτn−1
+ nb

λτn+1τn−2

τnτn−1
− τn−2τn

λτ 2
n−1

τ 2
n−1

λτn−2τn
− λ

τnτn−3

τn−1τn−2
+

τ 2
n−1

τn−2τn
− λ2 + (n − 1)b


 .

Note that

Qn =
(

τ 2
n−1

λτn−2τn

− λ

)(
τnτn−3

τn−1τn−2
�n − λ

)
+

τnτn−3

τn−1τn−2
+

τ 2
n−1

τn−2τn

− λ2 + (n − 1)b

=
∞∑

j=1

J (2j−1)
n λ−2j (3.33)

where

J (2j−1)
n = τn−1τn−3

τ 2
n−2

w(2j−1)
n − τnτn−3

τn−2τn−1
w(2j+1)

n j � 1. (3.34)

Thus, the conserved densities ρ
(j)
n and the associated fluxes J

(2j−1)
n for equation (2.19) have

been obtained.

Example 5. The matrix V (1,1)
n of the nonisospectral mixed Volterra lattice equation (2.20) is

V (1,1)
n =

(
g1(n, t) + g0(n, t)λ2 τn+1τn−2

τnτn−1
(λ3 − λEh1(n, t)) − τn−2τn

λτ 2
n−1

�n+1

τ 2
n−1

λτn−2τn
�n + h1(n, t)λ − λ3 τ 2

n−1

τn−2τn
�n + E−1g1(n, t) − τn+1τn−2

τnτn−1
λ2 − λ4

)

where

g0(n, t) = τn+1τn−2

τnτn−1
h1(n, t) = −

(
τn+1τn−2

τnτn−1
+

τnτn−3

τn−1τn−2

)

g1(n, t) = τn+1τn−3

τ 2
n−1

+
τn+2τn−2

τ 2
n

+

(
τn+1τn−2

τn−1τn

)2

.

(3.35)

Note that

Qn =
(

τ 2
n−1

λτn−2τn

�n + h1(n, t)λ − λ3

) (
τnτn−3

τn−1τn−2
�n − λ

)

+
τ 2
n−1

τn−2τn

�n + E−1g1(n, t) − τn+1τn−2

τnτn−1
λ2 − λ4

=
∞∑

j=1

J (2j−1)
n λ−2j (3.36)
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where

J (2j−1)
n = τn−1τn−3

τ 2
n−2

w(2j−1)
n �n − τnτn−3

τn−2τn−1
h1(n, t)w(2j+1)

n − τnτn−3

τn−2τn−1
w(2j+3)

n j � 1.

(3.37)

Hence the conserved densities ρ
(j)
n and the associated fluxes J

(2j−1)
n for equation (2.20) are

obtained. For nonisospectral lattice equation (2.21), the matrix V (1,1)
n takes the form

V (1,1)
n =

(
g1(n, t) + g0(n, t)λ2 τn+1τn−2

τnτn−1
(λ3 − λEh1(n, t)) − τn−2τn

λτ 2
n−1

τ 2
n−1

λτn−2τn
+ h1(n, t)λ − λ3 τ 2

n−1

τn−2τn
+ E−1g1(n, t) − (

τn+1τn−2

τnτn−1
+ nb

)
λ2 − λ4

)

where

g0(n, t) = τn+1τn−2

τnτn−1
+ nb h1(n, t) = −

(
τn+1τn−2

τnτn−1
+

τnτn−3

τn−1τn−2
+ (2n − 1)b

)

g1(n, t) = τn+1τn−3

τ 2
n−1

+
τn+2τn−2

τ 2
n

+

(
τn+1τn−2

τn−1τn

)2

+ (2n − 1)b
τn+1τn−2

τn−1τn

+ 2b(E − 1)−1 τn+2τn−1

τn+1τn

.

Note that

Qn =
(

τ 2
n−1

λτn−2τn

+ h1(n, t)λ − λ3

) (
τnτn−3

τn−1τn−2
�n − λ

)

+
τ 2
n−1

τn−2τn

+ E−1g1(n, t) −
(

τn+1τn−2

τnτn−1
+ nb

)
λ2 − λ4

= (n − 1)bλ2 − 2b
τnτn−3

τn−1τn−2
+ 2b(E − 1)−1 τn+1τn−2

τnτn−1
+

∞∑
j=1

J (2j−1)
n λ−2j (3.38)

where

J (2j−1)
n = τn−1τn−3

τ 2
n−2

w(2j−1)
n +

τnτn−3

τn−2τn−1
h1(n, t)w(2j+1)

n − τnτn−3

τn−2τn−1
w(2j+3)

n j � 1.

(3.39)

Therefore, we get conserved densities ρ
(j)
n and associated fluxes J

(2j−1)
n for equation (2.21).

4. Difference–difference analogies for the first flows of the isospectral negative Volterra
flows and the mixed Volterra flows

Given an integrable lattice soliton equation, one would construct its difference–difference
analogy. For many integrable lattice equations, such as the Toda lattice, the modified Toda
lattice, the relativistic Toda lattice, the Bogoyavlensky lattice, the relativistic Volterra lattice,
etc, difference–difference analogies have been obtained [14–20]. In this section, we establish
the difference–difference analogies for the first flows of the isospectral negative Volterra flows
and the mixed Volterra flows. Given a proper discrete spectral problem and its discrete-time
evolution problem

Eψ(n, t, λ) = Unψ(n, t, λ) ψ̃(n, t, λ) = Wnψ(n, t, λ) (4.1)

where ψ̃(n, t, λ) = ψ(n, t + h, λ). The compatibility of equation (4.1) leads to the following
discrete zero curvature equation:

ŨnWn = Wn+1Un. (4.2)

If a difference–difference equation derived from equation (4.2) is a discrete-time approximation
for a continuous-time lattice equation, then the difference equation is called the integrable
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discretization of the continuous-time lattice equation. In this case, the question is how do we
choose a proper Wn. We do not have a general method to find such a matrix Wn. However, it
should be noted that

ψ̃(n, t, λ) − ψ(n, t, λ)

h
= (Wn − I )ψ(n, t, λ)

h
(4.3)

where I is the identity matrix. This means that

lim
h→0

Wn − I

h
= Vn. (4.4)

It is obvious that equation (4.4) is only a necessary condition in order to obtain difference–
difference analogies. Now let us consider problem (4.1) in which

Un =
(

λ un

−1 0

)
Wn =

(
w11 w12

w21 w22

)
. (4.5)

It follows from equation (4.2) that

w11 = Ew22 − λEw21 (4.6)

w12 = −unEw21 (4.7)

λ(E − 1)w11 − Ew12 − ũnw21 = 0 (4.8)

λw12 − unEw11 + ũnw22 = 0. (4.9)

Substituting equations (4.6) and (4.7) into equations (4.8) and (4.9), we have

λ2(E2 − E)w21 + λ(E − E2)w22 + ũnw21 − un+1E
2w21 = 0 (4.10)

λun(E
2 − E)w21 + ũnw22 − unE

2w22 = 0. (4.11)

For the first isospectral negative Volterra flow, let

w21 = hf (n)

λ
w22 = 1 + λw21 (4.12)

where

lim
h→0

f (n) = c0(n) = τ 2
n−1

τn−2τn

. (4.13)

From equation (4.10), f (n) satisfies the equation

ũnf (n) = un+1E
2f (n). (4.14)

Note that un = τn+1τn−2

τnτn−1
, we have

f (n) = τ̃n−1τn−1

τ̃n−2τn

. (4.15)

Therefore a difference–difference analogy of the first isospectral negative Volterra flow (1.4)
is presented as follows:

ũn − un

h
= unf (n + 1) − ũnf (n). (4.16)

Now let us express a difference–difference analogy for the first isospectral mixed Volterra
flow:

∂un

∂t
= un

[
un+1 − un−1 + (E − 1)

τ 2
n−1

τn−2τn

]
. (4.17)
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Let

w11 = 1 +
hP (n)

1 + λ2h
w21 = −λh

1 + λ2h
+

hQ(n)

λ(1 + λ2h)
(4.18)

where

lim
h→0

P(n) = un lim
h→0

Q(n) = τ 2
n−1

τn−2τn

. (4.19)

From equation (4.10), P(n) and Q(n) are written as

P(n) = (E − 1)−1(un+1 − ũn) Q(n) = τ̃n−1τn−1

τ̃n−2τn

. (4.20)

We thus obtain a difference–difference analogy for equation (4.17),

ũn − un

h
= un[P(n + 1) + Q(n + 1)] − ũn[P(n − 1) + Q(n)]. (4.21)

5. Conclusions

As is well known, the Lax pairs and IMCL are two important integrable properties for a
discrete lattice system. The two integrable properties for many well-known lattice systems
have been discussed. However, there is little work on IMCL for the lattice hierarchy with
n-dependent coefficients in the literature. In this paper, by means of the discrete zero
curvature representation, nonisospectral negative Volterra flows and mixed Volterra flows
have been constructed. Furthermore, by means of solving discrete nonisospectral equations,
we have demonstrated the existence of IMCL for the two nonisospectral flows and obtained
the corresponding conserved densities and associated fluxes. Thus, their integrability has been
further confirmed. To our knowledge, the explicit constructions of integrable lattice hierarchy
and its infinitely many conserved quantities are remarkable in the case of hierarchies related
to nonisospectral deformations of a linear spectral problem.
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